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The manufacturing sector makes products on which the modern world depends. Billions of tons of 

steel and cement are used in buildings, bridges and roads each year. Chemicals, including ammonia, 

provide fertilizers and other essential building blocks for modern society.1  

At the same time, the manufacturing sector is responsible for roughly one third of global greenhouse 

gas (GHG) emissions. Steelmaking has the largest carbon footprint in the manufacturing sector, 

followed by cement-making and then chemicals. The remaining emissions come from aluminum, 

glass, paper and other light manufacturing.2-5 

Decarbonizing the manufacturing sector will be challenging. Many industrial processes require high 

and sustained heat, which fossil fuels are well-suited to delivering. Some industrial processes, 

including cement-making, rely on chemical reactions that emit CO2. Many industrial products are 

globally traded commodities, subject to significant loss of market share due to small increases in 

production costs.6,7 

Artificial intelligence (AI) is showing promise in helping address the challenge of decarbonizing the 

manufacturing sector. This chapter discusses that potential and explores opportunities for further 

work. 

A. How Can AI Help Decarbonize Manufacturing? 

Consider the following example: AI can play a central role in reducing costs and emissions for electric 

arc furnaces (EAFs)—a key technology for decarbonizing steelmaking. EAFs melt scrap metal using 

electricity instead of coal. Using recycled/circular feedstock, such as scrap, is a core idea that 

pervades the effort to decarbonize all types of manufacturing. This idea introduces a novel challenge: 

how to manage new sources of variability.  

Virgin raw materials are stable. Mining operators control their operations, packaging and shipping 

raw ingredients that meet specific quality criteria. Steelmakers are accustomed to this stability. But 

every batch of scrap is different. One batch of scrap may contain too much of an alloy, another 

possibly too little of it. Modern steelmakers can adjust for this variation by enhancing the scrap with 

costly additives. The most common strategy is simple: plan for the “worst batch” scenario. 

This strategy has led to a consistent, industry-wide overuse of additives. No matter what scrap metal 

comes in, unnecessary amounts of additives are added. The extent of this practice is such that the 

biggest portion of EAF steel’s carbon footprint is the upstream emissions from sourcing these 

additives.8 

AI offers a better approach to this challenge: instead of over-designing for the “worst batch,” AI can 

help steelmakers “adapt to each batch” with predictions that have higher accuracy than traditional 

software systems (Figure 5-1). The idea is to use AI to recommend optimal production settings, 

adapting to the variability in each batch. 

Manufacturing remains a challenging segment of the economy to decarbonize and will require 

significant long-term hardware research and investments. Many governments are sponsoring capital-

expenditure-heavy projects to adopt recycled feedstock, switch to greener sources of fuel, and make 

clever use of industrial heat.9,10 
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AI provides a complementary benefit that is (1) 

available today and (2) can be applied to existing 

manufacturing infrastructure. In many cases, AI can 

be applied today without any capital equipment 

change-out—it is ultimately just an operational 

change. As a result, AI can be orders of magnitude 

faster and cheaper to adopt than deeper 

decarbonization pathways that require significant 

capital expenditures. 

 

 

B. What Are Common Applications of AI In Manufacturing? 

i. Decarbonizing the process of making things 

The steelmaking example highlights one way AI can reduce a manufacturer’s emissions. There are 

many more. Here are a few proven ways AI can help reduce emissions across many sectors: 

▪ Adapt to volatility faster. Manufacturing plants are designed to minimize variation and 

consistently produce high-quality goods. The idea of using data to control quality variation 

dates to Walter A. Shewhart, who established the field of statistical process control at Bell 

Laboratories in the 1920s.11 AI extends the notion of statistical process control, enabling 

manufacturers to adapt to issues more quickly—any amount of time avoided making low-

quality goods reduces scrap and minimizes a plant’s waste and energy usage.  

▪ Adapt to volatility better. Without AI, reducing the time wasted making low-quality 

commodities may be difficult because existing statistical methods may not be accurate enough 

to explain the root cause of production issues. AI-based production can pinpoint the specific 

root cause of an issue in real-time during production. AI’s precision and ability to handle large 

numbers of potential root-cause factors is what drives this capability.  

▪ Avoid past mistakes and enable expertise retention. Over three quarters of manufacturing 

firms are concerned about their aging workforces.12 A primary component of their concern is 

losing the expertise that their skilled workers have amassed at specific manufacturing sites 

(e.g., the exact setting for a temperature for a particular product type). These sorts of insights 

are rarely recorded in an accessible manner, but skilled engineers and operators leave their 

marks in historical production data. Thus, while the experienced operator may know what to 

do in any scenario, a novice may leverage AI to sift through prior production runs and extract 

insights that resemble an issue at hand. AI can map challenges happening today to historical 

periods, filtering out interventions that did not work and focusing on those that did. In this 

way, AI can help new talent perform more efficiently, reducing waste and energy consumption 

during onboarding and beyond. 

 

Figure 5-1. Factories are increasingly digitalizing their 

operations. 
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▪ Improve yield. Production at scale is never 

100% efficient: while 10 grams of 

ingredients may yield 10 grams of a final 

product in the laboratory, 10 tonnes of 

ingredients may yield only 9 tonnes of final 

product at scale. Scaling production 

introduces inefficiencies caused by the 

challenge of operating large-scale 

machinery and prioritizing production 

speed.13 AI can help minimize this yield 

loss. By analyzing historical production 

data, AI can identify unexpected points in 

production where complex operational 

changes may lead to improved yields. AI is 

uniquely suited to learning the 

idiosyncrasies of large-scale manufacturing 

facilities and can provide specific 

recommendations on how to improve 

production yield for each site individually. 

▪ Enable recycling and circularity. Having traditionally relied on high-quality, low-variability raw 

ingredients, many industrial sectors are embracing recycled feedstock to reduce their carbon 

footprint, as well as increasing use of prior components and parts. Both could be considered 

increased circularity, potentially helping with cost, as well as carbon intensity. However, 

recycled and circular feedstocks typically exhibit low quality and certainly have high variability. 

This is the example from the steelmaking case study, with direct parallels in the chemicals, 

aluminum, glass, and paper sectors, among others. Embracing recycled feedstock not only 

reduces emissions during manufacturing, but also relieves demand on mining virgin 

ingredients in the first place. This aligns with the materials-efficiency objective highlighted in 

the sixth assessment report14 of the Intergovernmental Panel on Climate Change (IPCC). 

▪ Minimize energy consumption. Manufacturing facilities are not designed to minimize energy 

consumption; they are designed for safety. This means plants operate with conservative safety 

margins factored into all parts of production. This presents an opportunity for energy 

improvements while maintaining safety standards. This topic is a focus of the fifth assessment 

report15 of the IPCC and serves as an optimization target for AI as well. Digital control systems 

which automatically operate much of the machinery at modern manufacturing sites, can be 

orchestrated using AI to adapt to operating conditions to safely reduce energy consumption. 

Reinforcement learning techniques can explore energy efficiencies in a gradual and safe way, 

exploiting operating set points that provide the biggest energy savings while operating with 

the safety margins that matter. Applications like these can provide net energy emissions 

reductions for plants with no hardware changes needed. 

 

Figure 5-2. AI enables manufacturers to adapt to recycled 

feedstock. Factories typically address the increased variability 

of recycled feedstock by planning for the “worst case” 

scenario; this leads to unnecessary waste and excess 

emissions. Instead, factories can use AI to optimize operations 

and produce equally reliable products with net CO2e 

reductions. 
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▪ Adopt alternative energy sources. In some sectors, such as scrap-based steelmaking, 

production is shifting to using clean electricity, which provides a pathway to shifting towards 

green production. In other cases, however, the switch may not be so simple. In direct 

steelmaking, manufacturers are shifting towards hydrogen, biomass, and carbon capture. In 

cement, the use of alternative fuels at the kiln is steadily increasing, including hydrogen and 

biomass, as well as carbon capture. Adopting alternative energy sources, however, comes with 

its own new source of volatility. Alternative cement fuels can negatively impact clinker quality, 

forcing cement mills to continue using hydrocarbon-based fuels for stability.16 AI can help 

adapt to this new source of variability, enabling an increased, if not full conversion, to newer 

greener sources of fuels during production. 

 

▪ Adopt smaller and quicker batch manufacturing. Batch production, which encapsulates much 

of the steel and chemicals sectors, embodies a tradeoff between size and speed. Larger 

batches offer more opportunity to correct for mistakes and adapt to production issues, while 

smaller and quicker batches use less energy and offer production flexibility. Reducing the cycle 

time—the amount of time it takes to make a batch from start to finish—is a common 

challenge, compounded by the switching between different product types between batches. AI 

can help analyze patterns in high-dimensional historical production data and recommend 

Box 5-1  

CASE STUDY: ALLOY ADDITIVE REDUCTION  
IN STEELMAKING 
In 2022, a Brazilian steel manufacturer using AI achieved 8% reduction in alloy additive consumption. 
This reduction came with a commensurate $3/metric ton cost savings and a 7.5% reduction in 
CO2e/metric ton.17 

This company achieved these results by  

• Acquiring recycled scrap metal for their production 

• Measuring the chemical composition of each batch of scrap 

• Leveraging AI recommendations during melting to add as little (if any)  
additives as possible 

• Predicting the risk of producing each batch of steel, trading off  
potential quality issues with emissions 

• Reducing the quality variation of their final product. 

 
Adopting AI as part of a plant’s operating workflow, manufacturers can  
progressively target high-opportunity use cases within their production. 
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operational set points as production shifts quickly from batch to batch. Reducing cycle time 

comes with direct emissions reduction along with energy minimization, and typically requires 

no hardware changes to the plant. 

ii. Decarbonizing supply chains and adopting dematerialization strategies 

▪ Optimize manufacturing schedules. The production and storage of commodities are driven by 

market demands. Factories optimize their production schedules to minimize order wait-time 

while reducing switching costs between product types or grades. Inefficiencies in scheduling 

lead to superfluous production being stored on-site (leading to unnecessary emissions 

associated with moving large volumes of material) and switching costs (leading to unnecessary 

emissions due to keeping equipment running without producing any goods). AI can help with 

this scheduling process by optimizing complex production schedules to minimize such 

transitions and it can do so at greater speeds and accuracy than manual approaches. AI can 

also help forecast market demands, enabling manufacturers to prepare for anticipated market 

demand ahead of time.18  

▪ Minimize logistics overhead. Manufacturers and shipping companies collaborate to deliver 

billions of tonnes of material across the globe. Handling and routing such large amounts of 

material with precision is a complex operational task. Shipments that are kept in storage 

and/or unnecessarily shuffled around during this process lead to energy waste. Poorly planned 

shipping routes can add to the indirect emissions that come with transporting goods to their 

final destinations. AI can help with this process in two ways. First, AI can optimize shipping 

operations, such as terminals and ports, to minimize container movement while correctly 

loading and unloading shipments from one mode of transport to another. Second, AI can help 

with forecasting both weather conditions and market demand, enabling logistics companies to 

plan and reduce operational inefficiencies.19  

▪ Evaluate and adopt dematerialization strategies. The 6th IPCC Assessment Report highlights 

material efficiency as a key strategy in reducing the carbon footprint of manufacturing. This 

strategy involves increasing circularity of materials used during production, while consuming 

the smallest amount of new ingredients possible. It also involves designing and manufacturing 

of stronger, lighter, and better materials to reduce how much is needed for downstream 

applications. AI can assist with both objectives by targeting production practices that reduce 

waste—increasing stability with recycled feedstock—and precisely matching product 

specifications to production.20 AI can also be used to design materials for easier disassembly 

and recycling. However, material efficiency is not tracked the same way as energy efficiency, 

which poses a systematic challenge in this endeavor.21 
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iii. Decarbonizing the impact of maintaining industrial equipment 

▪ Monitor processes. Industrial facilities are typically designed to operate for long stretches of 

time, ranging from chemical plants that operate with one day of downtime per week, to steel 

blast furnaces that can operate continuously for years at a time. Any unexpected issues or 

downtime cause unnecessary and often preventable additional emissions. Aluminum smelters 

can sometimes unexpectedly fail in a way that releases perfluorocarbons—a potent GHG. AI 

forecasting models can predict when this is about to happen, enabling operators an 

opportunity to proactively avoid such scenarios.22 Similarly, silicon levels in tapped iron of blast 

furnaces can indicate an unexpected cooling of the furnace—but only when it is too late to act. 

AI can forecast silicon levels in a blast furnace, enabling operators to pre-emptively avoid any 

furnace cooldowns that would cause avoidable emissions.23 

▪ Plan for maintenance. 

Scheduling maintenance for 

batch production is 

reasonably straightforward 

since downtime between 

batches can be used to service 

equipment. However, 

continuous-process machinery 

requires regular maintenance 

that causes a reduction in 

capacity, if not direct 

downtime for the plant. Like 

cleaning a filter that clogs over 

time, these maintenance procedures are typically conducted on a regular basis—regardless of 

the state of the equipment. However, as manufacturing plants adopt increasing variable feed- 

and fuel-stock, continuous-process machinery can degrade at wildly differing rates. AI can be 

used to forecast the optimal time to service machinery, thus reducing downtime and the 

resulting unnecessary emissions that come from winding a plant down and up again.24 

▪ Manage alerts at scale. Highly instrumented production sites have thousands of sensors that 

raise alerts if their measurements are out of expected ranges. These alerts can sometimes 

refer to mild warnings that operators can ignore if they know the underlying cause is 

temporary (e.g., a particularly cold or hot day). Other alerts can be critical and require initiating 

costly plant shutdowns and other safety protocols. Handling such alerts, when hundreds may 

be going off at a time, is a challenging task for manufacturing operators. AI can contextualize 

these alerts to help manage them at scale. AI software can automatically detect patterns of 

common alerts that may be used to reconfigure underlying sensor limits. AI can also highlight 

very unusual alerts and raise additional awareness in the rare cases they occur. These 

techniques are already being applied in cybersecurity,25 and can help manufacturing operators 

detect and minimize emissions with better accuracy and speed. 

 
Figure 5-3. Factories comprise thousands of interconnected sensors. 
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C. Barriers  

Several barriers prevent the widespread adoption of AI in the decarbonization of manufacturing. 

They include the following: 

▪ Lack of incentive to decarbonize. A threshold issue is the incentive of manufacturers to 

decarbonize, which can involve expense, market risk, adoption of unfamiliar technologies and 

disruption of longstanding ways of doing business. Regulatory requirements or clear market 

rewards are the two reasons why most factories and logistics companies pursue 

decarbonization, but such requirements or rewards are often lacking. In the absence of 

incentives to decarbonize, AI tools that could help with this process will rarely be considered or 

adopted. 

▪ Lack of investment in digitalization. Manufacturing companies are often—culturally and 

operationally—anchored to the pre-digital era of the industrial revolution. While large 

manufacturing companies are at various stages of embracing digitalization across their 

production and supply chains, small- to medium-sized businesses may need to first invest in 

digitizing their operations. This process may involve installing sensors, connecting them to 

databases, and maintaining an information technology foundation to support connecting all 

parts of the business. 

▪ Low digital literacy. Digitalization requires manufacturers to develop, hire or outsource 

personnel with expertise. Developing such talent in-house involves training internal domain 

experts with data literacy, storage, and manipulation skills. Hiring for digital talent often 

involves recruiting data scientists and data engineers to enhance existing staff in their work in 

this field. Some manufacturers may prefer to outsource such activities to consulting groups 

and other companies that provide such services. 

▪ Need for coordination across large organizations. Adopting AI in day-to-day workflows requires 

buy-in from many stakeholders. Manufacturing companies execute complex workflows that 

can involve up to dozens of departments. Team members must be given sufficient resources 

and time to build trust in AI-based strategies, which in turn should have clear deployment 

ownership. Results should be quantified and shared among stakeholders to further incentivize 

adoption. 

▪ Availability of recycled feedstock. Not every geography and economic market may have access 

to the same levels or quality of recycled feedstock. Individual recycling is an important 

challenge in recycling plastic products.26 Commercial recycling of commodities, such as steel, 

is well established in the United States, Europe, and Japan; similar workflows and markets are 

developing in South America, China, and India. Companies that lack consistent access to 

recycled feedstock may hesitate to adopt workflows, with or without AI, that rely on such 

sources.  
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D. Risks  

The adoption of AI in manufacturing also comes with a variety of risks. 

▪ Increased emissions due to lack of AI maintenance. Factories and logistics change over time. 

Any AI-based system that operates on real-time data must be carefully maintained and 

updated. Static AI solutions carry the risk of quickly producing inaccurate analyses, predictions 

and optimizations, which in turn can lead factories to carry out actions that increase their 

emissions. Factories that fail to adopt the workflows necessary to update and maintain AI 

systems raise the risk working with inaccurate AI systems over time. 

▪ Industrial accidents due to improper use. Factories can be dangerous places. Industrial 

accidents can harm workers and neighboring communities. If properly used, AI can reduce 

risks at factories, but the opposite could occur with improper use. If AI is tested improperly or 

implemented incorrectly or if humans are not kept in the loop, the risk of industrial accidents 

could increase. In adopting AI-based solutions, companies must develop new safety 

procedures with additional training to mitigate the risk of negative human health and safety 

outcomes. 

▪ Use of AI in processes that increase emissions. As a general-purpose technology, AI can also be 

used to reduce costs or speed deployment of industrial processes that increase GHG 

emissions. Regulatory pressure and market dynamics, along with other incentives, are ways to 

minimize this risk.  
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E. Recommendations 

1. Private companies should engage with governments, non-profits and academia to develop, 

release and maintain AI-ready datasets that pertain to industrial operations. This effort should 

leverage best practices for data sharing and hosting. Private companies should encourage those 

interested in leveraging their data to explore high-impact AI applications. 

2. Private companies should develop clear processes to accelerate the adoption of digitalization 

within their organizations, from streamlining vendor evaluation to incentivizing internal adoption 

of AI in high impact use cases.  

3. Technical societies should develop educational assets and programs to increase digital and AI 

literacy within industrial workforces. These initiatives should scale across the workforce, from 

operators up to executives. Emphasis should be on developing a foundational skill set that will 

enable the manufacturing sector to adopt AI-based solutions. 

4. Governments and standards organizations should incentivize market demand for AI-optimized 

products that exhibit increased material circularity and lower carbon footprints. Governments 

should offer financial incentives to adopt such goods. 

5. Governments and academia should develop and deploy education opportunities at the 

intersection of AI and manufacturing as part of computer science and engineering programs. 

6. Governments should incentivize the market of recycled feed and fuel stock to increase their supply 

and reduce their costs. This reduces a barrier for adopting AI to increase material circularity. 
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